Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.396
Filtrar
1.
Anal Biochem ; 661: 114986, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384188

RESUMO

MicroRNAs (miRNAs) associated with lung cancer are diversifying. MiR-21, Let-7, and miR-141 are common diagnostic targets. Some new lung cancer miRNAs, such as miR-25, miR-145, and miR-126, have received increasing attention. Although various techniques are available for the analysis of lung cancer miRNAs, electrochemistry has been recognized for its high sensitivity, low cost, and rapid response. However, how to realize the signal amplification is one of the most important contents in the design of electrochemical biosensors. Herein, we mainly introduce the amplification strategy based on enzyme-free amplification and signal conversion, including non-linear HCR, catalytic hairpin assembly (CHA), electrochemiluminescence (ECL), and Faraday cage. Furthermore, new progress has emerged in the fields of nanomaterials, low oxidation potential, and simultaneous detection of multiple targets. Finally, we summarize some new challenges that electrochemical techniques may encounter in the future, such as improving single-base discrimination ability, shortening electrochemical detection time, and providing real body fluid samples assay.


Assuntos
Biomarcadores Tumorais , Neoplasias Pulmonares , MicroRNAs , RNA Neoplásico , Humanos , Eletroquímica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , MicroRNAs/análise , MicroRNAs/genética , RNA Neoplásico/análise , RNA Neoplásico/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética
2.
Nature ; 608(7921): 199-208, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859180

RESUMO

Circulating tumour DNA (ctDNA) in blood plasma is an emerging tool for clinical cancer genotyping and longitudinal disease monitoring1. However, owing to past emphasis on targeted and low-resolution profiling approaches, our understanding of the distinct populations that comprise bulk ctDNA is incomplete2-12. Here we perform deep whole-genome sequencing of serial plasma and synchronous metastases in patients with aggressive prostate cancer. We comprehensively assess all classes of genomic alterations and show that ctDNA contains multiple dominant populations, the evolutionary histories of which frequently indicate whole-genome doubling and shifts in mutational processes. Although tissue and ctDNA showed concordant clonally expanded cancer driver alterations, most individual metastases contributed only a minor share of total ctDNA. By comparing serial ctDNA before and after clinical progression on potent inhibitors of the androgen receptor (AR) pathway, we reveal population restructuring converging solely on AR augmentation as the dominant genomic driver of acquired treatment resistance. Finally, we leverage nucleosome footprints in ctDNA to infer mRNA expression in synchronously biopsied metastases, including treatment-induced changes in AR transcription factor signalling activity. Our results provide insights into cancer biology and show that liquid biopsy can be used as a tool for comprehensive multi-omic discovery.


Assuntos
DNA Tumoral Circulante , Resistencia a Medicamentos Antineoplásicos , Genoma Humano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Neoplasias da Próstata , Antagonistas de Receptores de Andrógenos/farmacologia , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Células Clonais/metabolismo , Células Clonais/patologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Marcadores Genéticos/genética , Genoma Humano/genética , Genômica/métodos , Humanos , Biópsia Líquida/métodos , Masculino , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Nucleossomos/genética , Nucleossomos/metabolismo , Neoplasias da Próstata/sangue , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Neoplásico/análise , RNA Neoplásico/genética , Receptores Androgênicos/metabolismo
3.
Comput Math Methods Med ; 2022: 2857022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756415

RESUMO

Oral squamous cell carcinoma (OSCC) has increasingly become a worldwide health concern, and its survival rate has not been much improved partially due to a deficiency of precise molecular markers. Dysregulation of LINC01116, a long noncoding RNA sequence, has been observed in several types of cancer. However, the role played by LINC01116 in OSCC has not yet been fully elaborated. This study explored how LINC01116 was involved in the regulation of OSCC progression by analyzing expressions of LINC01116 in OSCC patients. The findings demonstrated upregulation of LINC01116 in OSCC tissues as opposed to regular oral mucosa, and overexpression of LINC01116 was correlated with advanced tumor status. LINC01116 knockdown using shRNA markedly reduced the OSCC cell invasion and migration in vitro. Moreover, the expression of LINC01116 was negatively correlated with that of microRNA-9-5p (miR-9). Luciferase reporter and loss-of-function assays demonstrated that LINC01116 functioned as a competing endogenous RNA (ceRNA) that could effectively sponge miR-9, thus regulating the derepression of matrix metalloproteinase 1 (MMP1). Furthermore, we confirmed that LINC01116 knockdown did not affect the expression of MMP1 messenger RNA (mRNA). Collectively, it is demonstrated in this study that overexpression of LINC01116 can promote the OSCC progression. The LINC01116-miR-9-MMP1 axis provides a novel insight into the OSCC pathogenesis and offers potential therapeutic targets against OSCC.


Assuntos
Metaloproteinase 1 da Matriz , MicroRNAs , Neoplasias Bucais , RNA Longo não Codificante , RNA Neoplásico , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Metaloproteinase 1 da Matriz/biossíntese , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
4.
Med Sci Monit ; 28: e935071, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35296631

RESUMO

BACKGROUND As the second most frequent factor of brain metastasis worldwide, breast cancer and its pathogenesis have been researched intensively. Nevertheless, the molecular mechanisms of brain metastasis from breast cancer (BMBC) remain uncertain. The purpose of this study was to explore the key genes concerning the prognosis of BMBC and identify their predictive value. MATERIAL AND METHODS Obtained from the Gene Expression Omnibus (GEO) database, microarray datasets GSE125989, GSE52604, and GSE159956 were used to identify the differentially expressed genes (DEGs) and perform function enrichment analysis. RESULTS Of a total of 240 DEGs, 113 genes were upregulated and 127 genes were downregulated. The protein-protein interaction (PPI) was performed through STRING, and 29 hub genes were screened through Cytoscape. After being examined through the cBioportal online platform and the Oncomine database, 8 key genes were finally obtained, including COL14A1, COL3A1, COL6A3, THY1, MMP14, GAP43, PTPRN, and SNAP25. In the validation dataset GSE46928, COL14A1 was shown to have predictive significance of brain metastasis in breast cancer. CONCLUSIONS The key genes explored in this article could assist in identifying the molecular mechanism of BMBC. Also, COL14A1, COL3A1, COL6A3, THY1, MMP14, GAP43, PTPRN, and SNAP25 might be candidate targets for diagnosis and treatment of BMBC, and COL3A1 might have predictive value.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias da Mama/genética , Biologia Computacional/métodos , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Oncogenes/genética , Regulação para Cima , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/secundário , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Metástase Neoplásica , Prognóstico , RNA Neoplásico/genética
5.
Med Sci Monit ; 28: e935055, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35277469

RESUMO

BACKGROUND Tongue cancer is the most prevalent of head and neck squamous cell carcinomas, including base of tongue cancer (BOT) and oral squamous cell carcinoma of the mobile tongue (OTSCC). We aimed to investigate the role of RIPOR3 in tumorigenesis and its development as a potential prognostic biomarker for tongue cancer, especially OTSCC. MATERIAL AND METHODS Associations of expression, clinical pathologic features, and overall survival were analyzed by logistic regression, multivariate Cox analysis, and Kaplan-Meier methods. Gene set enrichment analysis (GSEA) and the CIBERSORT algorithm were performed to determine the correlation between RIPOR3 and tumor immune infiltration. cBioPortal was used for methylation and copy number variation (CNV) analysis. The Human Protein Atlas (HPA) and GSE31056 dataset were used for further external validation. RESULTS RIPOR3 expression in OTSCC was significantly associated with various clinicopathological parameters. Kaplan-Meier survival analysis showed that OTSCC with low RIPOR3 expression had a worse prognosis than that with high RIPOR3 expression. Multivariate analysis revealed that lower RIPOR3 expression was an independent prognostic factor for poor prognosis. GSEA and Neighbor Gene Network analysis showed RIPOR3 expression was related with the modulation and function of the immune-related pathway. Methylation level and CNV analysis showed that the downregulated expression of RIPOR3 was significantly related to hypermethylation but not to CNV. Finally, high RIPOR3 expression was validated at the protein level using the HPA database and GSE31056 dataset. CONCLUSIONS These findings suggested that RIPOR3 might serve as a promising prognostic biomarker and is related to the immune cell infiltration of OTSCC.


Assuntos
Carcinogênese/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais/genética , RNA Neoplásico/genética , Proteínas rac de Ligação ao GTP/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/patologia , Variações do Número de Cópias de DNA , Metilação de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias da Língua/genética , Proteínas rac de Ligação ao GTP/biossíntese
6.
Mol Cell Biochem ; 477(4): 1295-1308, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35137328

RESUMO

Previous studies have reported that exosomes bearing certain microRNAs (miRNAs) are related to the physiological functions of different types of cancer cells. Our study aimed to elucidate the role of miR-200a in esophageal squamous cell carcinoma (ESCC). We observed that miR-200a expression is higher in esophageal carcinoma cells, tissues, and exosomes than in normal cells and healthy tissues. We showed that exosome-shuttled miR-200a promotes the proliferation, migration, and invasion of esophageal cells and inhibits apoptosis, thereby leading to the progression of ESCC. We showed that miR-200a exerts its effects through its interaction with Keap1, thus altering the Keap1/Nrf2 signaling pathway. Our results suggest that exosome-shuttled miR-200a might be useful as a biomarker for prognosis in patients with ESCC.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/metabolismo , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína 1 Associada a ECH Semelhante a Kelch/biossíntese , MicroRNAs/metabolismo , Proteínas de Neoplasias/biossíntese , RNA Neoplásico/metabolismo , Idoso , Linhagem Celular Tumoral , Neoplasias Esofágicas/genética , Exossomos/genética , Feminino , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , RNA Neoplásico/genética
7.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163397

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common types of cancer diagnosed worldwide with high morbidity; drug resistance is often responsible for treatment failure in CRC. Non-coding RNAs (ncRNAs) play distinct regulatory roles in tumorigenesis, cancer progression and chemoresistance. METHODS: A literature search was conducted in PubMed database in order to sum up and discuss the role of exosomal ncRNAs (ex-ncRNAs) in CRC drug resistance/response and their possible mechanisms. RESULTS: Thirty-six (36) original research articles were identified; these included exosome or extracellular vesicle (EV)-containing microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and small-interfering (siRNAs). No studies were found for piwi-interacting RNAs. CONCLUSIONS: Exosomal transfer of ncRNAs has been documented as a new mechanism of CRC drug resistance. Despite being in its infancy, it has emerged as a promising field for research in order to (i) discover novel biomarkers for therapy monitoring and/or (ii) reverse drug desensitization.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos , RNA Neoplásico , RNA não Traduzido , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Exossomos/genética , Exossomos/metabolismo , Humanos , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
8.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163589

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and is one of the leading causes of cancer-related deaths worldwide. Regorafenib, a multi-kinase inhibitor, is used as a second-line treatment for advanced HCC. Here, we aimed to investigate the mechanism of the antitumor effect of regorafenib on HCC and evaluate altered microRNA (miRNA) expression. Cell proliferation was examined in six HCC cell lines (HuH-7, HepG2, HLF, PLC/PRF/5, Hep3B, and Li-7) using the Cell Counting Kit-8 assay. Xenografted mouse models were used to assess the effects of regorafenib in vivo. Cell cycle analysis, western blotting analysis, and miRNA expression analysis were performed to identify the antitumor inhibitory potential of regorafenib on HCC cells. Regorafenib suppressed proliferation in HuH-7 cell and induced G0/G1 cell cycle arrest and cyclin D1 downregulation in regorafenib-sensitive cells. During miRNA analysis, miRNA molecules associated with the antitumor effect of regorafenib were found. Regorafenib suppresses cell proliferation and tumor growth in HCC by decreasing cyclin D1 via alterations in intracellular and exosomal miRNAs in HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , MicroRNAs/biossíntese , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , RNA Neoplásico/biossíntese , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , RNA Neoplásico/genética , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/genética
9.
Clin Cancer Res ; 28(3): 498-506, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105718

RESUMO

PURPOSE: Previously, clinical trials of experimental virotherapy for recurrent glioblastoma multiforme (GBM) demonstrated that inoculation with a conditionally replication-competent Δγ134.5 oncolytic herpes simplex virus (oHSV), G207, was safe. Following the initial safety study, a phase Ib trial enrolled 6 adult patients diagnosed with GBM recurrence from which tumor tissue was banked for future studies. PATIENTS AND METHODS: Here, we analyzed tumor RNA sequencing (RNA-seq) data obtained from pre- and posttreatment (collected 2 or 5 days after G207 injection) biopsies from the phase Ib study patients. RESULTS: Using a Spearman rank-order correlation analysis, we identified approximately 500 genes whose expression pattern correlated with survival duration. Many of these genes were enriched for the intrinsic IFN-mediated antiviral and adaptive immune functional responses, including immune cell chemotaxis and antigen presentation to T-cells. Furthermore, we show that the expression of several T-cell-related genes was highest in the patient with the longest survival after G207 inoculation. CONCLUSIONS: Our data support that the oHSV-induced type I IFN production and the subsequent recruitment of an adaptive immune response differed between enrolled patients and showed association with survival duration in patients with recurrent malignant glioma after treatment with an early generation oHSV.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Ensaios Clínicos Fase I como Assunto , Perfilação da Expressão Gênica/métodos , Glioblastoma/genética , Glioblastoma/terapia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos , RNA Neoplásico/genética , Simplexvirus , Adulto , Idoso , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/mortalidade , Feminino , Glioblastoma/imunologia , Glioblastoma/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/mortalidade , Taxa de Sobrevida
10.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35105806

RESUMO

The protumor roles of alternatively activated (M2) tumor-associated macrophages (TAMs) have been well established, and macrophage reprogramming is an important therapeutic goal. However, the mechanisms of TAM polarization remain incompletely understood, and effective strategies for macrophage targeting are lacking. Here, we show that miR-182 in macrophages mediates tumor-induced M2 polarization and can be targeted for therapeutic macrophage reprogramming. Constitutive miR-182 knockout in host mice and conditional knockout in macrophages impair M2-like TAMs and breast tumor development. Targeted depletion of macrophages in mice blocks the effect of miR-182 deficiency in tumor progression while reconstitution of miR-182-expressing macrophages promotes tumor growth. Mechanistically, cancer cells induce miR-182 expression in macrophages by TGFß signaling, and miR-182 directly suppresses TLR4, leading to NFκb inactivation and M2 polarization of TAMs. Importantly, therapeutic delivery of antagomiR-182 with cationized mannan-modified extracellular vesicles effectively targets macrophages, leading to miR-182 inhibition, macrophage reprogramming, and tumor suppression in multiple breast cancer models of mice. Overall, our findings reveal a crucial TGFß/miR-182/TLR4 axis for TAM polarization and provide rationale for RNA-based therapeutics of TAM targeting in cancer.


Assuntos
Reprogramação Celular , Neoplasias Mamárias Animais/metabolismo , MicroRNAs/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais , Macrófagos Associados a Tumor/metabolismo , Animais , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/genética , Receptor 4 Toll-Like/biossíntese , Receptor 4 Toll-Like/genética , Fator de Crescimento Transformador beta/biossíntese , Fator de Crescimento Transformador beta/genética
11.
Eur J Med Res ; 27(1): 14, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101137

RESUMO

BACKGROUND: Aberrant Wnt signalling, regulating cell development and stemness, influences the development of many cancer types. The Aryl hydrocarbon receptor (AhR) mediates tumorigenesis of environmental pollutants. Complex interaction patterns of genes assigned to AhR/Wnt-signalling were recently associated with lung cancer susceptibility. AIM: To assess the association and predictive ability of AhR/Wnt-genes with lung cancer in cases and controls of European descent. METHODS: Odds ratios (OR) were estimated for genomic variants assigned to the Wnt agonist and the antagonistic genes DKK2, DKK3, DKK4, FRZB, SFRP4 and Axin2. Logistic regression models with variable selection were trained, validated and tested to predict lung cancer, at which other previously identified SNPs that have been robustly associated with lung cancer risk could also enter the model. Furthermore, decision trees were created to investigate variant × variant interaction. All analyses were performed for overall lung cancer and for subgroups. RESULTS: No genome-wide significant association of AhR/Wnt-genes with overall lung cancer was observed, but within the subgroups of ever smokers (e.g., maker rs2722278 SFRP4; OR = 1.20; 95% CI 1.13-1.27; p = 5.6 × 10-10) and never smokers (e.g., maker rs1133683 Axin2; OR = 1.27; 95% CI 1.19-1.35; p = 1.0 × 10-12). Although predictability is poor, AhR/Wnt-variants are unexpectedly overrepresented in optimized prediction scores for overall lung cancer and for small cell lung cancer. Remarkably, the score for never-smokers contained solely two AhR/Wnt-variants. The optimal decision tree for never smokers consists of 7 AhR/Wnt-variants and only two lung cancer variants. CONCLUSIONS: The role of variants belonging to Wnt/AhR-pathways in lung cancer susceptibility may be underrated in main-effects association analysis. Complex interaction patterns in individuals of European descent have moderate predictive capacity for lung cancer or subgroups thereof, especially in never smokers.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Neoplasias Pulmonares/genética , RNA Neoplásico/genética , Receptores de Hidrocarboneto Arílico/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Genótipo , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de Hidrocarboneto Arílico/metabolismo , Via de Sinalização Wnt
12.
Mol Cell Biochem ; 477(4): 1281-1293, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35129780

RESUMO

Triple-Negative Breast Cancer (TNBC) is one of the most aggressive and hot BC subtypes. Our research group has recently shed the light on the utility of natural compounds as effective immunotherapeutic agents. The aim of this study is to investigate the role of a methoxylated quercetin glycoside (MQG) isolated from Cleome droserifolia in harnessing TNBC progression and tuning the tumor microenvironment and natural killer cells cytotoxicity. Results showed that MQG showed the highest potency (IC50 = 12 µM) in repressing cellular proliferation, colony-forming ability, migration, and invasion capacities. Mechanistically, MQG was found to modulate a circuit of competing endogenous RNAs where it was found to reduce the oncogenic MALAT-1 lncRNA and induce TP53 and its downstream miRNAs; miR-155 and miR-146a. Accordingly, this leads to alteration in several downstream signaling pathways such as nitric oxide synthesizing machinery, natural killer cells' cytotoxicity through inducing the expression of its activating ligands such as MICA/B, ULBP2, CD155, and ICAM-1 and trimming of the immune-suppressive cytokines such as TNF-α and IL-10. In conclusion, this study shows that MQG act as a compelling anti-cancer agent repressing TNBC hallmarks, activating immune cell recognition, and alleviating the immune-suppressive tumor microenvironment experienced by TNBC patients.


Assuntos
Glicosídeos/farmacologia , MicroRNAs/imunologia , RNA Longo não Codificante/imunologia , RNA Neoplásico/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Proteína Supressora de Tumor p53/imunologia , Feminino , Humanos , Células MCF-7 , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Proteína Supressora de Tumor p53/genética
13.
Sci Rep ; 12(1): 1789, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110572

RESUMO

Despite the recent precipitous decline in the cost of genome sequencing, library preparation for RNA-seq is still laborious and expensive for applications such as high throughput screening. Limited availability of RNA generated by some experimental workflows poses an additional challenge and increases the cost of RNA library preparation. In a search for low cost, automation-compatible RNA library preparation kits that maintain strand specificity and are amenable to low input RNA quantities, we systematically tested two recent commercial technologies-Swift RNA and Swift Rapid RNA, presently offered by Integrated DNA Technologies (IDT) -alongside the Illumina TruSeq stranded mRNA, the de facto standard workflow for bulk transcriptomics. We used the Universal Human Reference RNA (UHRR) (composed of equal quantities of total RNA from 10 human cancer cell lines) to benchmark gene expression in these kits, at input quantities ranging between 10 to 500 ng. We found normalized read counts between all treatment groups to be in high agreement. Compared to the Illumina TruSeq stranded mRNA kit, both Swift RNA library kits offer shorter workflow times enabled by their patented Adaptase technology. We also found the Swift RNA kit to produce the fewest number of differentially expressed genes and pathways directly attributable to input mRNA amount.


Assuntos
Biomarcadores Tumorais/genética , Biblioteca Gênica , Neoplasias/genética , RNA Neoplásico/análise , RNA-Seq/métodos , RNA-Seq/normas , Transcriptoma , Perfilação da Expressão Gênica , Humanos , Neoplasias/patologia , RNA Neoplásico/genética , Análise de Sequência de RNA/métodos , Células Tumorais Cultivadas
14.
Signal Transduct Target Ther ; 7(1): 40, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35153295

RESUMO

Circular RNAs (circRNAs) were shown to play an important role in the occurrence and progression of tumors. However, the functions of nuclear genome-derived circRNAs localized in mitochondria of tumor cells remain largely elusive. Here, we report that circPUM1, a circular RNA derived from back-splicing of pre-mRNAs of nuclear genome PUM1, localizes in mitochondria. The expression level of circPUM1 is positively correlated with HIF1α accumulation under CoCl2-induced intracellular hypoxic-like condition in esophageal squamous cell carcinoma (ESCC) cell lines. Importantly, circPUM1 acts as a scaffold for the interaction between UQCRC1 and UQCRC2 in ESCC cell lines. Knock-down of circPUM1 would result in lower intracellular oxygen concentration, downregulated oxidative phosphorylation, decrease of mitochondrial membrane potential, increase of ROS generation and shrinking of mitochondria, respectively. CircPUM1 depletion induces dysfunction of the mitochondrial complex III and the cleavage of caspase3 spontaneously. Interestingly, disruption of circPUM1 led to pyroptosis that initiates the cell death of ESCC cell lines. Therefore, we conclude that circPUM1 plays a critical role in maintaining the stability of mitochondrial complex III to enhance oxidative phosphorylation for ATP production of ESCC cells and moreover propose that ESCC cells exploit circPUM1 during cell adaptation.


Assuntos
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , RNA Circular/metabolismo , RNA Neoplásico/metabolismo , Animais , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Humanos , Masculino , Camundongos , Camundongos Nus , Mitocôndrias/genética , RNA Circular/genética , RNA Neoplásico/genética
15.
Elife ; 112022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35147498

RESUMO

Lung cancer (LC) prognosis is closely linked to the stage of disease when diagnosed. We investigated the biomarker potential of serum RNAs for the early detection of LC in smokers at different prediagnostic time intervals and histological subtypes. In total, 1061 samples from 925 individuals were analyzed. RNA sequencing with an average of 18 million reads per sample was performed. We generated machine learning models using normalized serum RNA levels and found that smokers later diagnosed with LC in 10 years can be robustly separated from healthy controls regardless of histology with an average area under the ROC curve (AUC) of 0.76 (95% CI, 0.68-0.83). Furthermore, the strongest models that took both time to diagnosis and histology into account successfully predicted non-small cell LC (NSCLC) between 6 and 8 years, with an AUC of 0.82 (95% CI, 0.76-0.88), and SCLC between 2 and 5 years, with an AUC of 0.89 (95% CI, 0.77-1.0), before diagnosis. The most important separators were microRNAs, miscellaneous RNAs, isomiRs, and tRNA-derived fragments. We have shown that LC can be detected years before diagnosis and manifestation of disease symptoms independently of histological subtype. However, the highest AUCs were achieved for specific subtypes and time intervals before diagnosis. The collection of models may therefore also predict the severity of cancer development and its histology. Our study demonstrates that serum RNAs can be promising prediagnostic biomarkers in an LC screening setting, from early detection to risk assessment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Neoplásico , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , Detecção Precoce de Câncer , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/sangue , MicroRNAs/genética , RNA Neoplásico/sangue , RNA Neoplásico/genética , Curva ROC
16.
Eur J Med Res ; 27(1): 29, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35209947

RESUMO

BACKGROUND: The incidence of thyroid cancer, a most common tumor in the endocrine system, has increased in recent years. A growing number of studies have focused on the molecular mechanisms of thyroid cancer subtypes, aiming to identify effective therapeutic targets. Endocytosis is of vital significance in the malignant development of tumors, although its involvement in thyroid cancer has been rarely reported. METHODS: HIP1R expressions in thyroid cancer from the TCGA database were analyzed by UALCAN software. Thyroid epithelial and cancer cell lines were cultured in vitro. Western blotting and quantitative PCR were used to analyze protein and mRNA levels, respectively. Cell viability was measured by CCK-8 assay. Immunofluorescence staining indicated protein distribution in cell. Co-immunoprecipitation was used to study protein-protein interaction. Immunohistochemical staining was used to analyze protein expression in clinical tissues. Differences between groups were compared using the two-tailed Student's t test, and those among three or more groups were compared by one-way or two-way ANOVA. RESULTS: In the present study, HIP1R (Huntingtin Interacting Protein 1 Related) was found upregulated in thyroid cancer tissues and cell lines compared with that in the controls, while knockdown of HIP1R significantly inhibited the proliferation of thyroid cancer cells. Since HIP1R is essential for the clathrin-dependent endocytic process, we thereafter explored the effect of HIP1R on the endocytosis of thyroid cancer cells. Interestingly, knockdown of HIP1R significantly reduced the number of clathrin-coated pits (CCPs) in thyroid cancer cells. In addition, the interaction between HIP1R and PTEN (phosphatase and tensin homolog) was identified in thyroid cancer cells. Knockdown of HIP1R downregulated intracellular PTEN in thyroid cancer cells, but upregulated membrane-binding PTEN. Notably, flurbiprofen, a commonly used analgesic, significantly inhibited the proliferation of thyroid cancer cells and interfered with the interaction between HIP1R and PTEN, thereby enhancing the binding of PTEN to cell membrane. However, the proliferation inhibitory effect of flurbiprofen was attenuated when knocking down HIP1R or PTEN. CONCLUSIONS: Upregulated HIP1R in thyroid cancer cells promotes cell proliferation and mediates the endocytosis of PTEN. Flurbiprofen may exert an anti-tumor effect on thyroid cancer by blocking the interaction between HIP1R and PTEN.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Flurbiprofeno/farmacologia , Regulação Neoplásica da Expressão Gênica , Proteínas dos Microfilamentos/genética , RNA Neoplásico/genética , Neoplasias da Glândula Tireoide/genética , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proliferação de Células , Células Cultivadas , Inibidores de Ciclo-Oxigenase/farmacologia , Endocitose/efeitos dos fármacos , Endocitose/genética , Humanos , Proteínas dos Microfilamentos/biossíntese , Transdução de Sinais , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia
17.
PLoS One ; 17(2): e0264025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213597

RESUMO

Experimental breakthroughs have provided unprecedented insights into the genes involved in cancer. The identification of such cancer driver genes is a major step in gaining a fuller understanding of oncogenesis and provides novel lists of potential therapeutic targets. A key area that requires additional study is the posttranscriptional control mechanisms at work in cancer driver genes. This is important not only for basic insights into the biology of cancer, but also to advance new therapeutic modalities that target RNA-an emerging field with great promise toward the treatment of various cancers. In the current study we performed an in silico analysis on the transcripts associated with 800 cancer driver genes (10,390 unique transcripts) that identified 179,190 secondary structural motifs with evidence of evolutionarily ordered structures with unusual thermodynamic stability. Narrowing to one transcript per gene, 35,426 predicted structures were subjected to phylogenetic comparisons of sequence and structural conservation. This identified 7,001 RNA secondary structures embedded in transcripts with evidence of covariation between paired sites, supporting structure models and suggesting functional significance. A select set of seven structures were tested in vitro for their ability to regulate gene expression; all were found to have significant effects. These results indicate potentially widespread roles for RNA structure in posttranscriptional control of human cancer driver genes.


Assuntos
Evolução Molecular , Neoplasias , Conformação de Ácido Nucleico , Filogenia , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Neoplásico , Humanos , Neoplasias/genética , Neoplasias/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
18.
Tissue Cell ; 74: 101721, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34979376

RESUMO

MicroRNA (miRNA) is vital to the progression of hepatocellular carcinoma (HCC). Thereinto, miR-369-5p could yield assorted effects on various cancers, but there are few reports concerning the effect of miR-369-5p on HCC. Thus this study aimed to investigate the effect and mechanism of miR-369-5p in HCC. The data of miR-369-5p and HOXA13 expressions in liver hepatocellular carcinoma (LIHC) were analyzed by starBase, and then the miR-369-5p expression in HCC tissues and cells was detected by quantitative real-time PCR. Subsequently, miR-369-5p mimic was transfected into HCC cells and then its effects on cell activities were evaluated by cell counting kit-8, colony formation, wound healing, transwell assays, respectively. Expressions of epithelial-mesenchymal transition (EMT)-related genes were determined by western blot. The targeting relationship between miR-369-5p and HOXA13 was predicted by Targetscan and verified by dual-luciferase reporter assay. Pearson correlation test was used to analyze the correlation between HOXA13 and miR-369-5p. The above assays were experimented again to investigate the effects of HOXA13 on biological activity and EMT of HCC cells. MiR-369-5p expression was down-regulated and HOXA13 expression was up-regulated in LIHC. MiR-369-5p targeted HOXA13 and the expression of miR-369-5p was negatively correlated with the HOXA13 expression. MiR-369-5p inhibited the viability, proliferation, migration and invasion of HCC cells, increased E-cadherin level and decreased N-cadherin and Vimentin expressions. Concurrently, HOXA13 overexpression could counteract the effects of miR-369-5p on biological activity and EMT-related biomarkers of HCC cells. To conclude, miR-369-5p inhibits the viability, proliferation, migration and invasion of HCC cells by repressing the expression of HOXA13.


Assuntos
Carcinoma Hepatocelular/metabolismo , Movimento Celular , Proliferação de Células , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/biossíntese , RNA Neoplásico/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Neoplásico/genética
19.
Bioengineered ; 13(2): 2567-2584, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35015607

RESUMO

As the fourth commonest malignancy among females worldwide, cervical cancer (CC) poses a huge challenge to human health. The pivotal regulatory roles of lncRNAs in cancers have been highlighted. LOXL1 antisense RNA 1 (LOXL1-AS1) has been reported to play a key role in cervical squamous cell carcinoma and other various cancers. Thus, we investigated the roles and mechanisms of lncRNA LOXL1-AS1 in CC. The in vivo experiments demonstrated that LOXL1-AS1 downregulation inhibited tumor growth and metastasis and proliferation of CC cells. The results of RT-qPCR demonstrated that LOXL1-AS1 and ectodermal-neural cortex 1 (ENC1) expression levels were upregulated in CC cells and tissues, while microRNA-423-5p (miR-423-5p) level was downregulated. As subcellular fractionation assays, RNA pull down assays and luciferase reporter assays revealed, LOXL1-AS1 bound to miR-423-5p and miR-423-5p targeted ENC1. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, wound healing and colony formation assays demonstrated that miR-423-5p upregulation and LOXL1-AS1 downregulation inhibited CC cell proliferation and migration, while ENC1 upregulation attenuated the inhibitory effects of miR-423-5p upregulation on the malignant phenotypes of CC cells. Western blotting was conducted to measure protein levels and the results showed that ENC1 knockdown inhibited the activation of ERK/MEK pathway. In summary, the LOXL1-AS1/miR-423-5p/ENC1 axis accelerates CC development through the MEK/ERK pathway.


Assuntos
Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Neuropeptídeos/metabolismo , Proteínas Nucleares/metabolismo , RNA Antissenso/metabolismo , RNA Neoplásico/metabolismo , Neoplasias do Colo do Útero/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , MicroRNAs/genética , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética , Neuropeptídeos/genética , Proteínas Nucleares/genética , RNA Antissenso/genética , RNA Neoplásico/genética , Neoplasias do Colo do Útero/genética
20.
JCI Insight ; 7(4)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35015732

RESUMO

Sustained proliferative signaling and resisting cell death are hallmarks of cancer. Zinc finger protein 277 (ZNF277; murine Zfp277), a transcription factor regulating cellular senescence, is overexpressed in colon cancer, but its actions in intestinal homeostasis and neoplasia are unclear. Using human and murine intestine, human colon cancer cells, and ApcMin/+ mice with dysregulated ß-catenin signaling and exuberant intestinal neoplasia, we explored the actions of ZNF277/Zfp277 and defined the underlying mechanisms. In normal human and murine intestine, ZNF277/Zfp277 was expressed uniquely in early stem cell progenitors, undifferentiated transit-amplifying cells (TACs). Zfp277 was overexpressed in the ApcMin/+ mouse colon, implicating ZNF277/Zfp277 as a transcriptional target of ß-catenin signaling. We confirmed this by showing ß-catenin knockdown reduced ZNF277 expression and, using chromatin IP, identified 2 ß-catenin binding sites in the ZNF277 promoter. Zfp277 deficiency attenuated intestinal epithelial cell proliferation and tumor formation, and it strikingly prolonged ApcMin/+ mouse survival. RNA-Seq and PCR analyses revealed that Zfp277 modulates expression of genes in key cancer pathways, including ß-catenin signaling, the HOXD family that regulates development, and p21WAF1, a cell cycle inhibitor and tumor suppressor. In both human colon cancer cells and the murine colon, ZNF277/Zfp277 deficiency induced p21WAF1 expression and promoted senescence. Our findings identify ZNF277/Zfp277 as both a TAC marker and colon cancer oncogene that regulates cellular proliferation and senescence, in part by repressing p21WAF1 expression.


Assuntos
Colo/metabolismo , Neoplasias do Colo/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Mucosa Intestinal/metabolismo , Neoplasias Experimentais , Dedos de Zinco/genética , Animais , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Proliferação de Células , Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proteínas de Ligação a DNA/biossíntese , Humanos , Mucosa Intestinal/patologia , Camundongos , Regiões Promotoras Genéticas , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Fatores de Transcrição , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...